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What kind of lattice Hamiltonian manifestly has an ordered state with spontaneous orbital currents? We
consider interacting spinless fermions on an array of square plaquettes, connected by weak hopping; the array
geometry may be a 2�2L ladder, a 2�2�2L “tube,” or a 2L�2L square grid. At half filling, we derive an
effective Hamiltonian in terms of pseudospins, of which one component represents orbital currents, and find
the conditions sufficient for orbital current long-range order. We consider spinfull variants of the aforesaid
spinless models and make contact with other spinfull models in the literature purported to possess spontaneous
currents.
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I. INTRODUCTION

In condensed-matter physics, strongly correlated electrons
underly a great variety of ordered states, both common and
exotic �e.g., ferromagnets, superconductors�. One of the
lesser-studied orders is spontaneous currents �known some-
times as “orbital antiferromagnetism”�. In this paper, we seek
a minimal �spinless� toy model that manifestly exhibits such
currents, precisely because any systematic study of fermion
orderings with a quadratic order parameter reveals that the
possible ordered states include not only the familiar cases of
charge- or spin-density waves or superconductivity, but also
spontaneous orbital currents.1–5 Yet such states have not been
definitively observed in any material, nor numerically in the
Hubbard model,6 and only very recently for any realistic mi-
croscopic Hamiltonian.7,8 Thus, we ask: which aspects of the
interactions and/or degrees of freedom dispose a system ge-
nerically toward ordered states with spontaneous currents ?

Such states were considered especially in the context of
high-Tc cuprates. Early in their history, “flux phases” with
current order were invented9–11 however the actual phase was
expected to be disordered. More recently, two different kinds
of spontaneous-current order were advanced to explain the
mysterious pseudogap state of high-Tc cuprates.3,5 Reference
5 proposed the “d-density wave,” which breaks translational
symmetry �currents circulate in opposite senses around even
and odd plaquettes�; variants were considered more
recently,12 e.g., modulated versions.13,14

In contrast, Varma’s phases3,15 require the so-called
“three-band” model in which oxygen orbitals of the CuO2
layer are explicit independent degrees of freedom; the latter
state breaks fourfold rotational and time-reversal symmetry
but not translational symmetry. Experiments on
photoemission16 �in BSCCO� and neutron diffraction17 �in
YBCO� indicated time-reversal symmetry breaking, in the
pattern of Ref. 15. Finally, Khomski and collaborators
showed currents are implied by noncoplanar spin order in
�spinfull� Mott insulators.18

These proposals motivate a basic question: under what
circumstances, in principle, can a quantum state be realized
with spontaneous currents? Where, in a model’s parameter
space, is such a state favored? Ever since the Hubbard
model, toy lattice models, having a minimal parameter space

and possibly amenable to solution, have been key tools to
sort out basic questions such as these. For the more familiar
orders, “strong-coupling” models are well known in which
some “zero-order” state trivially has the order in question,
and the order is stable against small perturbations. Thus, in
the phase diagram, one is assured of a corner where the
ordered phase occurs and extends an undetermined distance
toward the regime where perturbations are large �which is
usually the physical regime�. But in the case of currents or-
der, no general intuitive picture has emerged.

This paper addresses this question using a toy model built
from square plaquettes; focusing mainly on the simplest case
of spinless fermions, we explore the possibilities for realiz-
ing spontaneous currents. The main prior study of orbital
currents in spinless models is Nersesyan’s ladder model19,20

in which a map to spinfull chains was introduced that we
adopt in Sec. IV B. Quite recently, spinless models were mo-
tivated by the possible realization in cold dilute atoms.21

The choice of square plaquettes is a choice motivated
both by convenience of calculation and real-material geom-
etries. As we will see, a square plaquette has spontaneous
currents as one of its natural degrees of freedom which is
what we desire to investigate: possibility of spontaneous cur-
rents in the zero-order ground state.

This paper is organized as follows: In Sec. II, we define
our toy-model Hamiltonian and set up the various lattice
geometries—tube, ladder, and square lattice—we shall deal
with; we go on to describe the properties of one square
plaquette as it forms the basic unit of all the lattice geom-
etries considered, in particular, reducing its degrees of free-
dom to a pseudospin via the method of canonical transfor-
mations �which is briefly summarized in the Appendix, as it
is the basis of all our subsequent calculations.� The core
section is Sec. III, where we implement the pseudospin pro-
jection �illustrating it in detail for the case of a “tube” lattice�
and obtaining a pseudospin effective Hamiltonian, showing
its final form for the respective lattices; we also explore the
relation between the fermion Hamiltonian and the pseu-
dospin Hamiltonian, focusing on possibility of spontaneous
currents in the ground state. In Sec. IV, we connect our work
to spinfull models in two ways: simply incorporating spin
�Sec. IV A� or mapping a pair of site indices to spin labels
�Sec. IV B�. At last in Sec. V we ask if we have learned how
to construct a uniform lattice model with currents. We con-
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clude �Sec. VI� by discussing why it is hard to obtain spon-
taneous current order and what light this may shed on real-
istic motivated models of such order.

II. MICROSCOPIC MODEL AND PSEUDOSPIN MAPPING

Our basic model Hamiltonian is H=Hhop+HV+H� with

Hhop � − t �
n.n.�

�c†�r�c�r�� + H.c.� , �2.1a�

HV � + V�
�

n̂�r�n�r�� , �2.1b�

H� � − t� �
n.n.�−�

�c†�r�c�r�� + H.c.� . �2.1c�

Each site r has an orbital with room for one spinless fermion.
A disjoint set of plaquettes �“strong plaquettes”� are singled
out. Within each strong plaquette �tagged by “�” in nota-
tions� there is a hopping −t on every bond; there is also a
repulsion V between any two fermions �whether first or sec-
ond neighbors in a spinless model, of course, there can be no
onsite term�.

Finally, every bond between bold plaquettes has a hop-
ping −t�, which is assumed to be a small perturbation. We
will consider three kinds of lattice geometries, as shown in
Fig. 1�a� a one-dimensional tube where the strong plaquettes
are oriented transverse; �b� a ladder in which every other
plaquette is strong, and �c� a square lattice in which one of
four plaquettes is strong. The ladder is simplest but also has
the least symmetry.

We were guided by three considerations while concocting
the model of Eq. �2.1�. First, we desired the spontaneous
currents to be explicitly related to the degrees of freedom
describing our �degenerate� ground state subspace. �See Sec.
II B, below.� Second, the �zero-temperature� behavior should
be obvious in a strong-coupling limit. A standard trick22,23 to
achieve both ends is to artificially weaken some bonds
thereby introducing a small parameter �t� in our case�. In the
t�=0 limit, the system decomposes into small disjoint clus-
ters, each with a degenerate ground state whose operators are
represented by pseudospins. As the small parameter is per-
turbatively turned on, it generates an effective Hamiltonian
between the pseudospins; from the symmetry of the effective
Hamiltonian, one can often read off the symmetry of its
ground state.

Finally, to make our model more physical, we limit the
terms to fermion hoppings and interactions and no other
four-fermion terms. Also, as we hope that our model�s�
might later be adiabatically connected to a uniform one �see
Sec. V�, if a certain term is included �say� within strong
plaquettes, we will be open to including an interplaquette
term of the same form �with arbitrary coefficients�. But we
never assume any particular condition on the ratios between
the intraplaquette and interplaquette terms, except that all of
the latter are small for perturbation purposes.

A. Eigenstates of disconnected plaquettes

Let H0 include the Hhop and HV terms, representing a set
of disconnected squares. We will work at half filling, i.e., two
fermions per square on average but our Hilbert space in-
cludes all ways of distributing these over the plaquettes.

Consider an isolated strong plaquette with sites x
=0,1 ,2 ,3 forming a ring. Note H�

V is the same for all states
accessible by hopping, so if there are n� fermions on the
plaquette, H�

V = 1
2n��n�−1�V drops out like a c number: as

in a noninteracting model,24 multifermion states are built
from the one-particle eigenstates on the ring, defined by cre-
ation operators

c̃m
† �

1

2�
x

e1/2i�mxc†�x� , �2.2�

where m=0, �1,2 is the angular momentum around the
ring. The single-fermion eigenenergies are

Em = − 2t cos�1

2
�m� , �2.3�

i.e., E0=−2t, E�1=0 , E2=+2t. Table I lists the multifermion
ground states for each occupation sector of a single
plaquette. Our interest will be the two-fermion sector since it
has degenerate ground states 	2+
 and 	2−
 with spontaneous
current in the + and − senses, respectively.

To have any possibility of a symmetry-broken state, �at
least some of� the plaquettes must be in the degenerate half-
filled ground states. What is the ground state of an extended
system of N sites forming N /4 disconnected plaquettes with
N /2 fermions �i.e., half filling�? The case V=0 is more de-
generate than we wished since any combination of states
with n�=1,2 ,3 has total energy −2t�N /4�. However, taking
V�0 favors the subspace in which n�=2 on every plaquette.

a)

b)

c)

FIG. 1. Geometry of a �a� tube, �b� ladder, and �c� square lattice.
The fermions reside on the vertices of the lattices shown.

TABLE I. States with n� fermions on a plaquette.

n� Label Occupation Energy

0 0

1 	1
 	0̃
 −2t

2 	2+
 	0̃ ,+1̃
 −2t+V

	2−
 	0̃ ,−1̃
 −2t+V

3 	3
 	0̃ ,+1̃ ,−1̃
 −2t+3V

4 	4
 	0̃ ,+1̃ ,−1̃ , 2̃
 6V
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In that case, the only freedom is the senses of the currents in
each of the N /4 plaquettes, giving a degeneracy 2N/4.

B. Pseudospin mapping

These states can be labeled as an array of spin-1
2 pseu-

dospins P� � with P�
z = �1 /2 when plaquette � is in state

	2�
. We aim, via second-order perturbation in t�, to com-
pute the effective Hamiltonian H� defined within the
ground-state manifold �and thus taking the form of a spin
Hamiltonian in �P� ��.�

The spin-1
2 pseudospin Hilbert space can be defined as

follows:

	 � 
z � 	 � 
 � 	2�
 ,

	 � 
x �
1
2

�	2�
 � 	2�
� ,

	 � 
y �
1
2

�	2�
 � i	2�
� . �2.4�

Different orders of the fermions—spontaneous currents
and �site- or bond-centered� charge-density waves—
correspond to expectations of three characteristic operators;
when projected to the pseudospin subspace, Eq. �2.4�, these
reduce to the three pseudospin operators �here i , j=0, . . . ,3
label sites counterclockwise around a plaquette, as in Figs. 3
and 4�

Pseudocurrent operator

Îij = − Î ji � i�ci
†cj − cj

†ci� →
P̂z

2
. �2.5a�

Charge-density operator

n̂i � ci
†ci → �− 1�i P̂

x

2
+

1

2
. �2.5b�

Bond-density operator

B̂ij � �ci
†cj + cj

†ci� → − �− 1��i+j� P̂y

2
+

1

2
. �2.5c�

Here “→” means the operators have the same matrix ele-
ments when acting in the pseudospin Hilbert space. Any op-
erators in the pseudospin subspace of a plaquette can be ex-

pressed in terms of P� ��P̂x , P̂y , P̂z�. Figure 2 depicts states in
which the respective operators have expectations.

So, for purposes of nomenclature, we call the pseudospin
states in the z direction as current carrying states �which is

expected since +1̃ and −1̃ carry momentum� or CCS, the
pseudospin states in the x direction as charge-density waves
or CDW, and the pseudospin states in the y direction as
bond-density waves or BDW. Spontaneous currents, orbital
currents, or just currents will be used interchangeably to refer
to CCS as they have been used in the literature before. �The
“bond order,” making different directions inequivalent with-
out a translational modulation of the charge density, would

be an example of “electron nematic”25,26 if all similarly ori-
ented bonds had the same order parameter.�

Incidentally, we use the term pseudocurrent operator be-
cause this is not the true current operator. The latter would be
the time derivative of the charge-density operator and is
evaluated as a commutator of the charge-density operator
with the full Hamiltonian. Most often, the true current is
proportional to �or at least has overlap with� the pseudocur-
rent operator; then, any state with pseudocurrent order will
also have true current order. �The pseudocurrent would be
the real current if the Hamiltonian contained only nearest-
neighbor hopping.�

III. EFFECTIVE PSEUDOSPIN HAMILTONIAN

In this section, we go on to calculate an effective Hamil-
tonian by second-order perturbation theory formulated via
canonical transformations �reviewed briefly in Appendix.�.
We shall consider several variations on the model Hamil-
tonian �2.1�; the result is always a special case of the general
form

H� = �
���


�JxP�
x P�

x + JyP�
y P�

y + JzP�
z P�

z �

− �
�

�hxP�
x + hyP�

y + hzP�
z � . �3.1�

Here P� � is the pseudospin; �� runs over all strong plaquettes
and ���
 are nearest neighbors �in the ladder, tube, or
square-lattice arrangements�. In view of the mapping of op-
erators, Eq. �2.5�, the original system has spontaneous-
current order if and only if Eq. �3.1� has pseudospin order in
the z direction. Consequently, our central concern is whether
and how the terms in Eq. �3.1� break pseudospin rotation
symmetry.

The above form of the effective Hamiltonian is governed
by the two different kinds of interplaquette hopping pro-
cesses that can occur at second-order perturbation theory. As

|2−>
y

1/2 1/2

1/2 1/2

|2+> y
1/2

1/2

1/2

1/2

|2−>x

1/4 3/4

1/43/4

x
|2+>

3/4 1/4

3/41/4

|2+> z

1/2

1/2

1/2

1/2

|2−>z

1/2

1/2

1/2

1/2

FIG. 2. Properties of single plaquette eigenstates. Arrows repre-
sent orbital currents. Lines represent the bond density; nondashed
line represents unit bond density, dashed line represents half, and
absence of line represents zero bond density. The numbers at the
corners of the plaquette represent the charge density at the respec-
tive sites. Note that they add up to two corresponding to half filling.
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we will see in the next subsection, at second order, only two
adjoining plaquettes can take part in the hopping processes.
On the one hand, a “degenerate” hop takes a fermion from a
plaquette to a single-fermion orbital on the adjoining
plaquette, degenerate with the orbital it hopped out of; such
hops are responsible for all the pseudospin exchange inter-
actions.

On the other hand, an “excited” hop takes a fermion from
a plaquette to a single-fermion orbital on the adjoining
plaquette, that is, not degenerate with the orbital it hopped
out of. The only way to return to the degenerate pseudospin
manifold is to undo the same hop thus making exchange of
pseudospins impossible. Consequently, excited-state hops
can �at most� generate only single-pseudospin terms in the
effective Hamiltonian.

We shall first consider the tube model case �Sec. III A�
since it has the greatest symmetry �the combination of two
adjoining plaquettes has a fourfold rotation�. The other two
cases �Sec. III B� are variations on the tube case, in that
either additional terms appear �due to reduced symmetry� or
are accidentally canceled.

A. Effective Hamiltonian for the tube

The perturbation �t� hopping� changes the filling on two
plaquettes, hence no first-order process stays in the reduced
Hilbert space �of n�

�=2 on all plaquettes�. To do that in a
second-order process, a fermion hops from one plaquette �A�
to a neighboring one �B� and then a fermion hops back from
the second to the first plaquette.

For a pair of plaquettes on a tube �Fig. 3�, the perturbation
takes the form

H� = − t���
i

cA,i
† cB,i + H.c.� = − t���

m

c̃A,m
† c̃B,m + H.c.� .

�3.2�

Notice that the hopping conserves the angular momentum
around the plaquette. For this reason, the only excited states
that can participate in the second-order hopping processes

are 	1;3
�	0̃ ; 0̃ ,+1̃ ,−1̃
 and 	3;1
�	0̃ ,+1̃ ,−1̃ ; 0̃
 and the
corresponding nonzero matrix elements are

�1;3	H�	2 + ;2−
 = t�

�3;1	H�	2 + ;2−
 = t�

�1;3	H�	2 − ;2+
 = − t�

�3;1	H�	2 − ;2+
 = − t�.

The rest of the matrix elements are zero. Thus, using Eq.
�A1�, we get the following second-order effective two-
plaquette Hamiltonian

Htube = −
2t�2

V
�	2 + ;2−
�2 + ;2−	 + 	2 − ;2+
�2 − ;2+	�

+
2t�2

V
�	2 + ;2−
�2 − ;2+	 + 	2 − ;2+
�2 + ;2−	� .

�3.3�

Conversion to spin Hamiltonian: In accord with our pseu-
dospin mapping, we abbreviate 	2�
 by 	� 
 to label the
pseudospin states. Now, the transcription to spin notation �for
pseudospin �P�� is

	2+
�2+	 → �1

2
+ Pz�;

	2−
�2−	 → �1

2
− Pz�;

	2+
�2−	 → P+;

	2−
�2+	 → P−. �3.4�

Inserting Eq. �3.4� into Eq. �3.3�, we get for the infinite tube

Htube = �
�

4t�2

V
�1

4
+ P� � · P� �+1� . �3.5�

Thus, the effective pseudospin Hamiltonian for the tube is a
one-dimensional spin-1/2 Heisenberg antiferromagnet which,
as is well known, does not exhibit long-range order but only
power-law correlations.

This calculation is not only reminiscent of, but completely
analogous to, the derivation of the effective Heisenberg an-
tiferromagnetic exchange interaction in a half-filled Hubbard
model; the role of spin is taken by our angular momentum,
since it is conserved by the hopping along the tube. Hence

only our 	�1̃
 single-particle states �analogous to spin-up
and spin-down electrons� take part in the second-order pro-
cess, thus giving rise to effective pseudospin exchange of
exactly the same �rotationally symmetric� form as spin ex-
change in the Hubbard model. This is exactly the content of
the discussion on degenerate hops in Sec. III.

In other cases of our model �ladder or square lattice�, the
perturbation need not conserve angular momentum, so ex-

cited states such as 	0̃ ; 0̃ ,+1̃ , 2̃
 or 	�1̃ ; 0̃ ,+1̃ ,−1̃
 may then
mediate second-order processes via the “excited-state” hops
defined at the beginning of this section Thus, they will give
rise to single-site pseudospin terms only.

B. Ladder and square lattice

In this subsection, we list down the results of similar cal-
culations for ladder and square lattice cases. For the ladder,
the effective pseudospin Hamiltonian is

11

22

3 3

00

A B

FIG. 3. The two-plaquette unit involved in a second-order hop-
ping process. Site labels show our convention for the tube.
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Hladder = �
�

−
t�2

V
�P�

z P�+1
z −

1

2
�P�

+P�+1
+ + P�

−P�+1
− ��

+
t�2

2V
� 1

1 + x
��P�

y � + const, �3.6�

where x�2t /V. To make the symmetry of the above expres-
sion clear, we make a simple transformation as follows.

Staggered pseudospins: Let us define a new set of stag-
gered spin operators T��, by switching the definitions of “up”
and “down” pseudospin on every other site B by a 180°
rotation around y axis. Then,

PB
z → − TB

z ;

PB
x → − TB

x ;

PB
y → TB

y ;

PA
� → TB

� �3.7�

while pseudospin operators on sites A stay unchanged. This
transformation converts Eq. �3.6� to

H� = �
�
� t�2

V
�const�x� + T�� · T��+1� +

t�2

2V�1 + x�
T�

y� .

�3.8�

In Eq. �3.8�, there is a uniform magnetic field in the pseu-
dospin y direction. We get the single-site terms from the
excited hops �defined at the start of this section� which are
not disallowed for the ladder. This competes with the anti-
ferromagnetic exchange term, having the effect �as usual in
antiferromagnets� of a uniaxial anisotropy favoring the xz
plane. Hence, the system has the symmetry of an XY model
ordering in that plane, which corresponds �by Eq. �2.5�� to
CDW and spontaneous currents. Since this model is in one
spatial dimension and has a continuous spin symmetry, it
would only have power-law correlations �as we noted above
for the tube case�.

Doing the same for the square lattice amounts to extend-
ing the result of the ladder calculation to a square lattice.
Recalling for the ladder �Eq. �3.8��, the pseudospin Hamil-
tonian for the two-plaquette unit was

H� =
t�2

V
�const�x� + T�A · T�B� +

t�2

2V
� 1

1 + x
��TA

y + TB
y � .

�3.9�

The similar result for the perpendicular direction in the plane
would be

H� =
t�2

V
�const�x� + T�A · T�B� −

t�2

2V
� 1

1 + x
��TA

y + TB
y � .

�3.10�

The minus sign for the single-plaquette terms in the second
case is because the bond ordering in the two perpendicular
directions are the pseudospin in +y and −y directions, respec-

tively �see Fig. 2�. Hence for the infinite square lattice, we
get

Hsquare =
t�2

V
�

��,�

�const�x� + T�� · T��� �3.11�

which is the antiferromagnetic Heisenberg Hamiltonian.
Since, the square lattice is two dimensional, its ground state
will possess long-range order. Notice that antiferromagnetic
tendency of staggered pseudospin implies a ferromagnetic
tendency for spontaneous currents in both ladder and the
square lattice.

C. Role of symmetries

Exploring symmetries can lead to a better understanding
of the relation between the form of microscopic model and
that of the effective Hamiltonian. Our starting fermion
Hamiltonian �acting on a two-plaquette unit� had the follow-
ing symmetries: �a� time reversal and �b� reflection symme-
try �flipping the two plaquette upside down�. We have only
considered models that maintain these symmetries.

1. Consequences of generic symmetries

These symmetries imply specific symmetries in the pseu-
dospin effective Hamiltonian �3.1�. �a� The absence of a

single-site term P̂z follows from the microscopic time-
reversal symmetry under which the pseudocurrent operator

flips sign. �b�. The absence of a single-site term P̂x is due to
the transverse reflection symmetry of the two-plaquette unit
under which the charge-density operator flips sign.27

The tube and square lattices both have a fourfold rotation
symmetry, too, under which the two bond-order states �pseu-

dospin +y and −y� are equivalent, ergo the P̂y terms are
absent. Moreover, for the most general one-particle spectrum
that a single plaquette could have �keeping intact the degen-

eracy of momentum carrying states, i.e., +1̃ and −1̃, but lack-
ing particle-hole symmetry�, the effective Hamiltonian
would still be of form Eq. �3.8�, though with different nu-
merical coefficients. On the other hand, the effective Hamil-

tonian for the ladder generically includes single-site P̂y terms
since they are not ruled out by any symmetry.

2. Role of lattice symmetry in ladder model

In our basic ladder Hamiltonian �2.1�, the single-plaquette
terms had an “accidental” �nongeneric� fourfold rotational
symmetry not guaranteed by the ladder’s symmetries. If we
generalize the ladder model so as to break the fourfold sym-
metry, what kinds of pseudospin asymmetries are generated?

If we make the transverse hopping t� within a strong
plaquette different from the longitudinal t, then the effective
Hamiltonian turns out to be
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Hladder = const + �
�
� t�2

2V�T�� · T��+1 + � t�2

2V�
�� 2	t

�V − 2t̄ + 	t��V − 2t̄ + 3	t�
�T�

y T�+1
y

+ � t�2

2�V − 2t̄ + 3	t�
+ 2	t�T�

y , �3.12�

where t̄��t+ t�� /2 and 	t� t�− t. The absence of fourfold
symmetry of the hopping around the plaquette leads to a
first-order field term +2	tTy and a second-order anisotropic
exchange along the Ty �BDW� pseudospin direction for the
ladder. This is because angular momentum is not a good
quantum number anymore, rather bond order is the good
quantum number.

Alternatively, we could spoil the fourfold symmetry of
intraplaquette interactions which produce single-pseudospin
terms. Making transverse and longitudinal interaction differ-
ent gives a linear coupling at first-order in perturbation
theory to the bond-charge operator 
�V� −V��Ty; as before,
the time reversal and reflection symmetries forbid linear Tx
or Tz terms.28

D. Engineering spontaneous currents by fermion interactions
(ladder)

Our study was motivated by the question: can the micro-
scopic models considered so far exhibit current-carrying
states spontaneously in their ground state with genuine order
in an Ising sense. To stabilize any particular kind of order
more than the others, we must spoil the symmetries by an-
isotropic pseudospin terms having the effect of an Ising-type
anisotropy in the desired direction.

In this section, we see if interplaquette interaction can
achieve this. The simplest such perturbation we can add to
Eq. �3.8� is the nearest-neighbor term

H� = V��nA�1�nB�0� + nA�0�nB�1�� . �3.13�

We have used the ladder numbering scheme in writing the
above expression. Looking at Fig. 2, we see how the term,
Eq. �3.13�, distinguishes the CDW sector from others, since
the operators such as nA�1� depend on the CDW order; on the
other hand, it cannot distinguish different CCS or BDW
states, since they have equal fermion densities on all sites.
Using Eq. �2.5�, we can easily convert the interaction term to
pseudospin language and indeed

H�� = V��1

2
−

PA
x PB

x

2
� = V��1

2
+

TA
x TB

x

2
� . �3.14�

We emphasize the above effective interaction, Eq. �3.14�, is
first order in perturbation theory and not second order as for
the hopping processes earlier in Sec. III. Equation �3.14� is
an adjustment of the Jx pseudospin coupling in Eq. �3.1� and
thus favors CDW order, either a uniform pattern on each
plaquette or an alternating one, depending on the sign and
magnitude of V�. An interplaqutte second-nearest-neighbor
interaction, i.e., V��nA�0�nB�0�+nA�1�nB�1��, gives the same

result as Eq. �3.14� but with a flipped sign for the exchange
term.

Thus, we see a route to favoring spontaneous currents for
the ladder. An infinitesimal attractive interplaqutte second-
nearest-neighbor interaction �V��0� or repulsive inter-
plaquette second-nearest-neighbor interaction �V� �0� will
make Jz�Jx and the ground state will have currents sponta-
neously. For a comparison, we note that in generalized Hub-
bard models, attractive nearest-neighbor interaction was ar-
gued to stabilize currents.29

For the tube and square lattice, interplaquette interactions
can only reduce the antiferromagnetic Heisenberg symmetry
to a continuous XY symmetry in currents/BDW plane and do
not favor currents exclusively. To do that, we must look to
interplaquette hoppings instead.

E. Engineering spontaneous currents by fermion hops (square
lattice)

An alternative extension of our model is to add additional
interplaquette hoppings. As we will see, for the ladder and
square lattice, this favors bond �BDW� order by increasing
the Jy pseudospin exchange while decreasing Jx and Jz cou-
plings in Eq. �3.1�. For the tube, interplaquette hopping to
any distance can never reduce the continuous Heisenberg
symmetry due to fourfold symmetry.

1. Guessing the fermion term?

A shortcut may allow us to quickly find fermion terms
yielding a desired interplaquette pseudospin Hamiltonian
form. Let’s extend the notion of “pseudospin” backward to
impute pseudospin to the single-fermion states 	�1
. Indeed,
we can just ignore the other orbitals since only the degener-
ate hoppings �explained at start of Sec. III� could give us a
pseudospin interaction from second-order perturbation
theory. Then, we just substitute T�A→����c��

† �A������c��A�,
where ��A means the usual Pauli matrices. Thus, any coupling
Heff

T between �components of� pseudospins T�A and T�B gets
transcribed to a four-fermion term Heff

c . If we can regroup the

four-fermion operators so that Heff
c 
−Ĥ�†Ĥ� where the op-

erator Ĥ� hops a fermion from plaquette B to A, then we

could take Ĥ� to be the interplaquette term reducing to Heff
c

via second-order perturbation theory.
When applied to two plaquettes in a ladder or square lat-

tice �using the site labels of Fig. 4�, we get

A B

0

12

3

0

1 2

3

FIG. 4. The two-plaquette unit involved in a second-order hop-
ping process for the ladder. Site labels show our convention for the
ladder.
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TA
z TB

z + TA
y TB

y → �cA,1
† cB,0��cA,0cB,1

† � + �A ↔ B� , �3.15�

where there was only one grouping such that the inter-
plaquette hops connected nearest neighbors; this is precisely
the nearest-neighbor weak hopping, Eq. �2.1c�. What about
the term which would break the degeneracy between bond
order and pseudocurrents

− TA
z TB

z + TA
y TB

y → �cA,0
† cB,0��cA,1cB,1

† � + �A ↔ B� .

�3.16�

The grouped factors in Eq. �3.16� are diagonal �t2� � fermion
hops. Unfortunately, the sign of this term is necessarily posi-
tive, so it always favors the Ty �bond-order� direction in
pseudospin space.

2. Fermion hops in general

A more comprehensive study of hops will be profitable
for the following reasons: �i� as we are about to show, it
reveals that the findings in Eqs. �3.15� and �3.16� are general
for any nearest-neighbor hopping, so that is not a route to the
desired order. �ii� Consequently, further-neighbor pseudospin
interactions coming from long-distance fermion hops are our
last hope to disfavor bond order in the square lattice and the
general formula guides us to the correct interactions for this
purpose. �iii� It is the root reason that the ladder and square-
lattices’ pseudospins needed to be staggered but not the tube
lattice’s.

Imagine a perturbation Hamiltonian containing hops from
any vertex of one strong plaquette to any vertex of another.
Let t1�, t2� , t2�, etc. be weak hoppings to sites at distances 1,
2, 2, and so on, respectively. Then the exchange part of the
two-plaquette effective pseudospin Hamiltonian is

H� = JTT�A · T�B + JPP� A · P� B

= �JT + JP�PA
y PB

y − �JT − JP��PA
z PB

z + PA
x PB

x � ,

�3.17�

where

JT = �t1� − 2t5� + t3��
2/V � 0, �3.18a�

JP = �t2� − 2t2� + t10� �2/V � 0. �3.18b�

Which kind of exchange does a given hopping give rise
to? If we orient the two plaquettes such that the two hop-
pings do not cross, the exchange coupling relates staggered
pseudospins or plain pseudospins depending on whether
clock sense of the numbering scheme on the two plaquettes
are same or alternating respectively �e.g., in Fig. 4, the non-
crossed hoppings are connecting plaquettes with same clock
sense, thus giving rise to staggered pseudospin exchange
coupling, i.e., T�A ·T�B�.

A related observation is that, in the ladder, there is a sym-
metry under mirror flipping every second plaquette around
the long axis of the ladder, while switching t1�↔ t2� and

t2�↔ t5� ; Eq. �3.18� shows this switches the T� and P� terms.
Inspecting Eq. �3.17�, we see that so long as we have only

crossed or only uncrossed fermion hoppings, the result is

isotropic in the �yz� pseudospin plane, so that bond order and
currents are degenerate. However, if we start from a mixture
of crossed and uncrossed hoppings, the bond-order �y� ex-
change is always stronger than the currents �z� exchange—
and is always antiferromagnetic.

3. Spontaneous currents via anisotropic frustration

Given this last fact, is it possible at all to obtain a pseu-
dospin anisotropy favoring Tz and hence current order over
the whole lattice, by coupling more distant units? This is
possible, in principle, through anisotropic frustration. �It is
assumed interactions have somehow already disfavored
charge ordering, as discussed in Sec. III D.�

Assume the dominant nearest-neighbor hopping is purely
t1�, as in our original and simplest model. The pseudospin
exchange has a continuous symmetry in the yz spin plane
leading to antiferromagnetic order degenerately in any mix-
ture of those components. Now imagine �say� a second-
neighbor pseudospin exchange due to mixed kinds of hop-
pings; by the above arguments, J2y is necessarily
antiferromagnetic, and J2y � 	J2z	. But unlike the nearest-
neighbor exchange, the enhanced second-neighbor J2y term
disfavors bond-order state �being of the wrong sign�.

A second-neighbor exchange is allowed on the ladder, us-
ing �say� the hops t3� and t10� connecting two plaquettes re-
lated by a �4,0� vector. On the square lattice, the second
nearest neighbor has a displacement �2,2� and this exchange
turns out to be symmetry forbidden. But the square lattice
can have the same �4,0� interplaquette hops as on the ladder
and these finally give our goal: we can favor spontaneous
order in the square lattice, albeit with a rather baroque
Hamiltonian.

IV. GENERALIZATION TO SPINFULL MODELS

It is natural to ask if we can extend our results to models
with spin. There are two quite different ways to imagine this.
First, as worked out in Sec. IV A, we can simply include an
additional spin degree of freedom in the Hamiltonians con-
sidered above. Alternately, as worked out in Sec. IV B we
can exactly map a site degree of freedom in one of our spin-
less models to the spin degree of freedom in a model with
half as many of lattice sites �thus keeping constant the total
degrees of freedom.�

A. Adding spin degree of freedom

For this extension of our model, we simply add spin in-
dices in all the terms of Eq. �2.1� while conserving the spin
and rerun the calculations of Secs. II and III. To make the
spinfull calculation analogous to what we did, the filling
should now be 3/8. Of the three fermions per plaquette, the

first two fill angular momentum zero �	0̃↑
 and 	0̃↓
�. The
third fermion goes in the degenerate current-carrying state,

	�1̃�
. The extended pseudospin representing each plaquette
is now the direct product of the same pseudospin degree of
freedom and a real spin S��.30 Also, the interaction term in Eq.
�2.1b� has to be augmented to include an onsite interaction
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term �U� equal in strength to the offsite interaction terms �V�
so that the multifermion eigenstates still remain direct prod-
ucts of single-fermion orbitals.

Here are the results for each case:
Spinfull tube

Heff = �2t�2

V
��

�

��P� � · P� �+1� + �S�� · S��+1�

+ 4�P� � · P� �+1��S�� · S��+1�� . �4.1�

Spinfull ladder

Heff = � t�2

2V
��

�
��1

2
�T�� · T��+1 + �T�� · T��+1��S�� · S��+1�

− � 1

1 + x
�T�

y� . �4.2�

Spinfull square lattice

Heff = � t�2

2V
� �

��,�

��1

2
�T�� · T�� + �T�� · T����S�� · S���� .

�4.3�

Thus the effective Hamiltonians have a form such as the
Kugel-Khomskii31 Hamiltonian for cubic titanates describing
spin and orbital superexchange interactions between d1 ions
having threefold degenerate t2g orbitals.

The result, Eq. �4.1�, for the tube case is proportional
�modulo a constant� to � 1

2 +2P� � · P� �+1� � 1
2 +2S�� ·S��+1� which

is the SU�4� symmetric Kugel-Khomskii model.32 For the
tube, the interaction terms are just degenerate hops of Sec.
III; they conserve spin as well as pseudospin. Actually, they
conserve a combined flavor which includes both the spin and
the pseudospin. Hence, the effective Hamiltonian possesses
an SU�4� symmetry in which there is no distinction between
the four combined flavors the hopping fermion might carry.
The interesting behavior of such SU�4� chains is discussed in
Ref. 32; in terms of the original fermions, it obviously cor-
responds to a high degeneracy between many kinds of order.

For the ladder and square lattice cases, the degenerate
hops do not conserve the combined flavor thereby reducing
the SU�4� symmetry to only SU�2��SU�2� for the exchange
terms. What kind of order do these lattices have? Notice that
the spin-pseudospin cross terms tend to favor ferromagnetic
order in one kind and antiferromagnetic order in the other.
Since we also have a pseudospin antiferromagnetic exchange
but no real spin exchange, the expected order is always fer-
romagnetic for the real spins.33 Then the pseudospin order is
the same as in a spinless model; in effect, the system spon-
taneously becomes spinless by polarizing in one spin flavor.

We compare our results to that of Ref. 35, in which a
Hubbard model with a similar pattern of strong and weak
plaquettes �t and t�� with just an onsite interaction term was
studied on a square lattice. Yao et al. found a host of differ-
ent phases for different values of the onsite interaction in-
cluding a Fermi liquid, a d-BEC �Bose Einstein condensate�,
a d-CDW, a d-BCS, a spin-1/2 antiferromagnet, a spin-3/2
antiferromagnet, and an “orbital nematic” phase at 3/8 fill-

ing, which is equivalent to one doped hole with respect to
half filling, on each plaquette �“Qh=1” or “x=1 /4” in their
notation�. In their model, it is only the parameter regime
Uc�4.6t�U�Ut�18.6t which admits the possibility for
currents.34 Then, the single-plaquette states are characterized
by spin-1/2 as well as a pseudospin-1/2 �called chirality �z by
Ref. 35, and having “px� ipy” symmetry, i.e., our angular

momentum 	�1̃
.�
The possibilities of orbital currents are not explicitly dis-

cussed in the above mentioned regime but implicit in the
results are the anisotropies in the pseudospin exchange terms
which is interesting �see Eqs. �4� and �6� of Ref. 35�. In the
regime Uc�U�Un�7.3, the system becomes a spin-1/2 an-
tiferromagnet with electron nematic order �same as our
BDW�, while in Un�U�Ut, there is no nematic ordering.
Perhaps, there are spontaneous currents in this regime. How-
ever, they do not discuss the origin of the pseudospin
anisotropies. It is all the more perplexing to us, given our
experience that one set of degenerate hops taking part in the
second-order perturbation theory can only give rise to isotro-
pic exchange.

B. Nersesyan map

As first proposed by Nersesyan,19 a spinfull model on any
lattice can be mapped to a spinless model on a doubled ver-
sion of that lattice �its direct product by �1,2�.� Each pair of
sites in the spinless model represents, respectively, the
spin-up and spin-down occupation. Thus, a spinless ladder
maps to a spinfull chain �or vice versa�, such that the leg
index maps to the spin index. �We shall call this a “rung
spin” to distinguish it from the real spin of Sec. IV A and the
pseudospin of all the earlier sections.� Hamiltonian terms
acting on a single rung of the ladder will be mapped to
single-site terms on the chain while terms along the ladder’s
leg map to terms along the chain’s leg. We exhibit examples
of the map in both directions.

In fact, since our plaquette is built from two rungs, each
plaquette pseudospin operator P� i corresponds to two neigh-
boring rung spin operators as shown below. Consider the
fermion basis states on each rung j that have nonzero
pseudocurrents, namely,

	 j+
 � �	j,1
 + i	j,2
�/2, �4.4a�

	 j−
 � �	j,1
 − i	j,2
�/2. �4.4b�

The � label in Eq. �4.4� is a rung pseudospin index defining
the z axis for rung pseudospin S� j� aligned with that of the
plaquette pseudospin such that

S�2j� = �Pj
x,Pj

y,Pj
z� , �4.5a�

S�2j+1� = �− Pj
x,Pyj,− Pj

z� . �4.5b�

On the other hand, Nersesyan’s rung spins �we call S� keeping
in mind the difference from the previous section� are related
to our rung spins S�� via �see Eqs. �3�–�5� of Ref. 19�

Sj
x = �− 1� jSj�

y , �4.6a�
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Sj
y = �− 1� jSj�

z, �4.6b�

Sj
z = �− 1� jSj�

x. �4.6c�

Notice that the definition of Nersesyan’s rung spins is stag-
gered compared to ours. Nersesyan used a “canted” rung spin
basis to make manifest the staggered nature of charge/spin
densities in CDWs and spin-density waves �SDW� for a spin-
1/2 Hubbard chain. We will write rung spins using the Ners-
esyan basis from now on. Using Eq. �4.6�, we can reuse the
results of Sec. III to figure out what a given fermion pertur-
bation projects to in terms of Nersesyan pseudospins.

As an illustration, our basic Hamiltonian for the spinless
ladder �see Eq. �2.1�� gets mapped to a chain of alternating
strong and weak bonds �“sf” here distinguishes the spinfull
model parameters�

H � − �
i,�

ti,i+1
sf �ci�

† ci+1,� + H.c.� + Usf�
i

n̂i↑ni↓ − hx
sf�

i

Si
x

+ �
i

Vi,i+1
sf n̂ini+1

with hx
sf= t and Usf=V; we get ti,i+1

sf = t or t� and Vi,i+1
sf =V or 0,

respectively, for strong or weak bonds �i , i+1�. Thus our
spinfull chain includes the usual hopping and interaction a
nearest-neighbor interaction and a field term along x in spin-
space or a single-site spin-flip term. This kind of spin map-
ping will map spontaneous-current states to spin-current
states with canted site-spin expectations, CDW to SDW, and
BDW to an equivalent BDW/paramagnet as one may readily
verify. The advantage of this kind of mapping is that we may
carry known results from spinfull models to spinless models
or vice versa.

Previously, the models of Refs. 36 and 37 are the best
examples of spinfull ladders in the literature which exhibited
spontaneous currents. Under Nersesyan’s map, the model of
Ref. 36 corresponds to a kind of tube spinless model without
fourfold symmetry �which our tube model does have�. Like
us, they considered a strong-coupling limit in which the lon-
gitudinal hoppings were weakened; however, their path to
spontaneous currents was unsatisfying from our viewpoint,
in that it depended on a pair-hopping �ring exchange� term.
Reference 37 exhibited a simpler spinfull ladder which was
shown numerically to have currents; for a special choice of
its parameters, Nersesyan’s map takes that model to a spin-
less fermion tube model which does have fourfold symmetry.
That mapped tube model still includes the same correlated
hop of a diagonal pair as the Ref. 36 model.

V. TOWARD UNIFORM SPINLESS MODELS

Our hope was that if we can find a strong-coupling model
that has spontaneous currents, perhaps it can be adiabatically
continued to a translationally invariant model that does not
distinguish the Hamiltonian terms on weak and strong
plaquettes. There are two preconditions to even consider this:
�i� the symmetry pattern of order should be consistent with a
uniform order. Below, in Sec. V A, we verify this for our
models. �ii� The “weak” and “strong” terms in the Hamil-

tonian should have the same form, differing only by the size
of the coefficient. That is easy enough to manage, even if we
adhere to the somewhat unnatural interaction term, Eq.
�2.1b�, with the nearest- and second-neighbor strengths made
equal for convenience. If that equality is carried over to the
interplaquette terms, it is actually beneficial since it cancels a
term favoring CDW ordering �see Eq. �3.14��

There is one further challenge: having conjectured a
Hamiltonian favoring current ordering, how could we verify
that? We need some family of variational wave functions that
would �ideally� be definable for all the interpolating Hamil-
tonians from strong coupling to uniform and where the varia-
tional parameters allow any value of the spontaneous-current
order parameter. �The best model of such a calculation is the
recent work of Ref. 8.� In the case of the spinless ladder
models, such a correspondence was already worked out by
Nersesyan19 and is elaborated below in Sec. V B.

A. Interplaquette spontaneous currents

For the weak bonds, the required pseudocurrent operator

is Îweak= i�cAi
† cBj −cBj

† cAi�, where i− j is a weak bond. We
again use the canonical transformation recipe, Eq. �A2� from
the Appendix, but now for the purpose of deriving an expec-
tation rather than a Hamiltonian term. The pseudocurrent op-
erator for the weak bonds projects, in pseudospin language,
to

Îweak = −
t�

2�2t + V�
�	2 + ;2+
�2 + ;2+	 − 	2 − ;2−
�2 − ;2−	�

= −
t�

2�2t + V�
�PA

z + PB
z � = −

t�

2�2t + V�
�TA

z − TB
z � . �5.1�

Since the pseudospin operator for the strong bond is just

+P̂z /2 �Eq. �2.5��, the weak-bond and strong-bond currents
have opposite directions �Fig. 5�, which is the same pattern
as the d-density-wave �ddw� state.5 Thus, this pattern is con-
sistent with a ddw-like state if we could analytically continue
our model to a uniform one. For the tube lattice, the weak-
bond currents are zero. That must be true to all orders on
grounds of symmetry.

B. Uniform model

Can one of our strong-coupling models be connected to a
uniform one, in which the distinction of strong and weak
bond vanishes? We found the Nersesyan map �Sec. IV B�
was the key to guessing a Hamiltonian that has a
spontaneous-current ground state. The spinless model’s
pseudocurrent order maps �as we show shortly� to spin-

FIG. 5. The orbital current pattern in 	2+ ;2+
 state.
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current order in the spinful model. One need only invent a
uniform spin Hamiltonian giving the desired order and such
that it maps to a plausible Hamiltonian of the spinless fermi-
ons. The only limitation is that the resulting spinless model is
built from site pairs: it lends itself to ladders or bilayers, but
not to �say� the fourfold symmetric square lattice.

The Nersesyan approach is an existence proof that if we
get spontaneous-current order in a simple, local, strong-
coupling model, the adiabatic extension can work all the way
to the uniform case. If we could find an analogous starting
point on the square lattice, that result would make the corre-
sponding extension more plausible; unfortunately �Sec. V B�
we could not find such a starting point.

Concerning the spin-current order mentioned above, con-
sider a strong plaquette in our ladder with angular momen-
tum +1 which has spontaneous pseudocurrents on its rungs
and leg bonds. It maps to a pair of sites on the spinfull chain
with Nersesyan spin expectations

�S� j
 
 �1,�− 1� j,0� �5.2�

which corresponds correctly to a nonzero �Pj
z
=1 �see Eqs.

�4.5� and �4.6��. The uniform Sx component is not surprising,
as every spinless ladder we consider includes a rung hopping
which becomes an x transverse field under Nersesyan’s map.

The pseudocurrent along a rung, Ii
�, maps to Sy, corre-

sponding to the alternating y component. What about the
pseudocurrents along the legs? Let us define a difference
between the two sides,

Ii
� � I�i,1�→�i+1,1� − I�i,2�→�i+1,2�. �5.3�

Of course, in the expected state, opposite sides have opposite
currents, so this also has a nonzero expectation. Evidently,
this simply maps to the z component of spin current from i
→ i+1, Ii→i+1

S . Indeed, in spin models with an isotropic
Hamiltonian �and also here�, spin current goes with the twist
between noncollinear spins, I�i→j 
Si�S j and indeed, the
staggering of rung-spin directions in Eq. �5.2� does give the
requisite nonzero �and alternating� �Si�Si+1�z component.

Now we see a simple route to a uniform model having
spontaneous currents: simply find a uniform Hamiltonian for
a spin-1/2 chain, having a ground state with the above stag-
gered spin canting. The simplest realization �from the spin
chain viewpoint� would be an antiferromagnetic chain with
�i� an Sx field, so the spins will cant transverse to it plus �ii�
a small anisotropy in the antiferromagnetic exchange, such
that the Sy axis is easier than Sz; this ensures the canting
happens in the y direction. The problem with following this
route literally is ingredient �ii�: Sx-Sx or Sy-Sy spin couplings
correspond, in the spinless model, to two-fermion pair corre-
lated hops in a plaquette, which we did not want to include.
Conversely, this illustrates why correlated hopping is condu-
cive to the existence of spontaneous currents.4

The scenario of the previous paragraph can be achieved,
instead, with the following adjustment of the Hamiltonian: in
place of a spin chain, take a Hubbard chain with a transverse
x field hx

sf, as above, plus a small ferromagnetic coupling Jz
sf

of neighboring Sz components. A strong Hubbard on-site re-
pulsion Usf provides the effective antiferromagnet exchange

at order �tsf�2 /Usf, in the standard fashion. Via the Nersesyan
map �see Eqs. �4.5� and �4.6��, we realize that: �1� the trans-
verse field suppressing spin ordering in x direction maps to a
term suppressing of BDW in the spinless ladder, �2� the
small ferromagnetic z coupling suppressing spin ordering in
z direction �by reducing the strength of z antiferromagnetic
exchange� maps to a term suppressing CDW in the spinless
ladder, and finally �3� due to the aforesaid suppressions, sta-
bilization of spin order in the y component maps to orbital
currents for the spinless ladder.

In the spinless language, the Hubbard Usf and −Jz
sfSi

zSi+1
z

interactions just map, respectively, to nearest-neighbor inter-
actions along the rungs and legs �repulsive V� and attractive
V��. The Hubbard hopping tsf and the transverse field hx

sf just
map, respectively, to hoppings along the rungs and legs �our
t� and t��. The half filling we adopted for the spinless model
corresponds to half filling in the Hubbard model. Unlike all
spinless models we previously mentioned, this model is a
uniform ladder with no weak and strong plaquettes.

The above paragraph is essentially a rediscovery of Ners-
esyan’s ladder model, Eq. �1� of Ref. 19. In particular, our
key ingredient, making V� attractive while V� repulsive and
zero V2, is essentially the same as Nersesyan’s recipe, which
is that V2−V� �0. It is interesting to note these chains have
fractionalized excitations, domain walls carrying 1/2 fermion
charge,20 corresponding to spinons in the spin model.

Extension to the square lattice?

The same mapping can be used in one dimension higher,
to build a spinless spontaneous-current state on a bilayer
from a Hubbard model on a square lattice21 �or any bipartite
lattice�. A spinfull model with plausible interactions on that
same lattice was known earlier38 that exhibits spontaneous
currents. That model’s Hamiltonian is similar to the Scholl-
wöck et al.37 ladder in one dimension higher and is similarly
engineered to have an SO�5� symmetric point. �A minor dif-
ference is their interlayer hopping may differ from the in-
layer hopping.� All their interaction terms and �isotropic� ex-
change act only on rungs. Thus, the main qualitative
difference between our model �apart from spin, of course�
would be our inlayer repulsion term. The �conjectured� order
in our bilayer model is the same alternating pattern of cur-
rents as in their model �Fig. 1 of Ref. 38�.

Unfortunately, this does not work for the plain square lat-
tice, for two reasons.39 First, the best we could manage for a
Hamiltonian �Sec. III E 3� depended on t3� and t10� hoppings
to a second neighbor plaquette while the much shorter hop-
pings entering Eq. �3.18b� must be negligible. Not only are
those absurdly distant neighbors to have a meaningful hop-
ping: once we make the lattice uniform, we must also include
t3� and t10� of the same separations as t3� and t10� but coupling
nearest-neighbor plaquettes and creating the undesired un-
frustrated anisotropy, Eq. �3.18b�. Second, we cannot be
guided by Nersesyan’s map, as it demands that sites come in
pairs.

Although, it seems difficult to obtain currents order in a
uniform square lattice, the terms which worked in the ladder
would still be effective in a rectangular lattice. That suggests
one possibility to obtain spontaneous currents as a symmetry
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breaking. Notice that a uniform bond order, i.e., the state
currently called electron nematic25 reduces the system to
rectangular symmetry, making t�� t� heuristically �see Sec.
III C 2�. Thus, spontaneous currents could be parasitic on
electron nematic order. This is a not a linear coupling of the
two order parameters; it would be a second Ising-type tran-
sition, to a state breaking Z2�Z2 symmetry.

VI. DISCUSSION

The central aim of this paper was to investigate the pos-
sibilities of a lattice model manifestly displaying spontaneous
currents in its ground state. Among our models, containing
standard hopping and interaction terms, it was fairly difficult
to stabilize only the spontaneous-current state. Frequently,
there was a remnant continuous symmetry leading to an ar-
bitrary mixing with one of the competing orders; and most
perturbations which could break that degeneracy tended to
favor the competing order. Something similar also happens
in some spinfull models meant to address the possibility of
spontaneous currents in a realistic system, e.g., the relation26

of d-density-wave current order and electron-nematic order
�related to our bond order�.

We did show that rather contrived and unappealing fer-
mion interaction or hopping terms could be used to stabilize
currents but it seems highly unlikely that those kinds of pro-
cesses are at work in real materials. We suggest our finding
may be related to the rarity of solids in nature having spon-
taneous currents in their ground state.39

A. Summary

The central results of this paper are as follows. We em-
phasize first that our microscopic Hamiltonian was limited to
�mainly spinless� models with interactions and one-fermion
hopping terms. We did not explore the possibilities of corre-
lated hopping, which were already known to be conducive to
the d-density-wave current order.4,36 Ultimately such terms
come microscopically from higher-order processes in fer-
mion hops; thus, within our picture, related terms might be
accessed by expanding our canonical transformation �Sec. III
and Appendix� to higher orders, producing effective interac-
tions with higher powers of pseudospin.

We showed that by tuning the parameters and the under-
lying geometry of a toy spinless Hamiltonian, we can make a
system acquire spontaneous currents, charge or bond order.
The crucial ingredient of our analysis was the pseudospin
mapping �Sec. II B� and degenerate second-order perturba-
tion theory �Appendix�. We saw that bond ordering is natu-
rally disfavored in ladders �Sec. III B�; while, for tube and
square lattice, the ground state can acquire possibly coexist-
ing charge, bond or current order in a symmetry breaking
fashion �Secs. III A and III B�. Since, the tube is quasi one
dimensional, the correlation will actually be power laws; but
for the square lattice, we will have true long-range order.
Furthermore, the pattern of currents corresponding to the
spontaneous currents carrying ground state is same as the
d-density-wave state �Sec. V A�. The Nersesyan map pro-
vided a way to extend our strong-coupling result to that of an
uniform case for the ladder �Sec. V B�.

B. Relation to three-band model and other real systems

The current contact of our topic with real systems is in the
three-band model of cuprates.3,15 A recent paper7 argued �by
mapping to a two-channel Luttinger liquid and then analytic
perturbation� that a ladder version of the three-band model of
cuprates has long-range order with a current pattern similar
to Varma’s state. This claim was brought into question by a
subsequent density matrix renormalization group �DMRG�
calculation40 on the same model: the current-current correla-
tions were seen �numerically� to decay with a power law. But
that, of course, indicates the presence of gapless excitations,
such as the Goldstone mode of a continuous symmetry; it
would not expected for the Ising-type symmetry of a
�pseudo�current operator, unless the system is accidentally at
a critical point.

In our spinless model, it was easy enough to get current
order degenerate with bond-density order or to stabilize the
latter, but quite hard to stabilize just current order. Could this
be going in the ladder system of Refs. 7 and 40 in which the
current operator is just one component of a larger order pa-
rameter with XY symmetry? We warn, however, that our
results also suggest that ladders �applied as an approach to
square lattice models37� are plain deceptive. The key terms
stabilizing currents depended on the very anisotropy of the
ladder.

For that reason, it is interesting that Ref. 8 do claim to
obtain currents in a variational and truly two-dimensional
calculation. So far, there is no clear picture of which inter-
actions are crucial to causing the order. A strong-coupling
caricature of the three-band lattice �or ladder� in the spirit of
our models might illuminate this point.
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APPENDIX: CANONICAL TRANSFORMATION

Since we use the method of canonical transformation for
our calculations, here is a very brief summary of the method
and the results that are used. Say that H0 represents the
strong-coupling limit, which is assumed to have eigenener-
gies �E�� with a large ground-state degeneracy, which how-
ever is split by a small perturbation H� �that has no matrix
elements between degenerate states of H0�. We desire to
project our problem onto the ground-state �“zero”� subspace
of H0. The usual way to accomplish this is canonical trans-

formation: let H̃�eiSHe−iS, where we require H̃��=0 for
any matrix element connecting the zero subspace to other
states; then, we can restrict our Hilbert space to the span of
eiS	�
, where 	�
 was one of the ground states.

To lowest order in H�, the standard canonical transforma-
tion is given by S���0 when states � and � are degenerate,
and S��� iH��� / �E�−E�� otherwise. Then the effective

Hamiltonian is given by H̃=H+�H, where

SPONTANEOUS CURRENTS IN SPINLESS FERMION… PHYSICAL REVIEW B 80, 085116 �2009�

085116-11



�H�� � −
1

2�
�
� 1

E� − E�

+
1

E� − E�
�H��� H��� �A1�

is the off-diagonal second-order perturbation correction.
Similarly, an operator O is transformed to Õ=O+�O, where
�to lowest order�

�O�� � i�
�

�H��� O��

E� − E�

−
O��H���

E� − E�
� . �A2�

For our problem, Hhop+HV is the strong-coupling limit and
H� is the small perturbation.
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